Cliffs are giant land masses of rocks and sediments that rise at an almost a 90° angle

Cliffs are giant land masses of rocks and sediments that rise at an almost a 90° angle. They are commonly formed near waterfalls, oceans, valleys and high up in mountains, due to processes such as erosion and weathering. Weathering play a vital role in the formation of cliffs. This process is stated to be of natural events which break down pieces of rocks to give the coastline its shape. These natural events include wind or rain, freeze thaw and salt crystallisation which have minimal effects on the cliffs at a short period of time whereas colossal hazards/ events such as hurricanes and storms can have a dramatic effect of the erosion rate at cliffs. May, (1971), remarked that the most substantial losses occurred in winter where rainfall and winds were at their peak. In coastal areas such as Dorset, which is both concordant, immense winds and waves of long fetches break off soft or less resistant material and rocks which leaves the more resistant rocks exposed therefore channelling the formation on cliffs demonstrated at the Cliffs of Moher, County Clare, Ireland. The definition of a concordant coast is when coastline has alternating layers of hard rock and soft rock that run parallel to the coast. The soft rock in usually protected from erosion as the hard rock acts as a protective barrier. Landforms such as Coves can be formed if the hard rock has been ruptured through therefore leaving the soft rock exposed to erosion (e.g. Lulworth Cove).

Furthermore, previous coastal studies carried out by Johonnessen et al (1982) concluded that heat of salts on salt crystallisation was possibly the main erosive mechanism above high tide on sunny, south facing sandstone cliffs for example east cliff. The average surface reading of NaCl are 27ppm (De Wolf, 2001). This study was constructed in Brighton therefore results will approximately be similar in Dorset.

We Will Write a Custom Essay Specifically
For You For Only $13.90/page!

order now

Many studies have been carried out to investigate what factors put certain cliffs at risk of rapid erosion. A variation of cliff response occurs according to material strength. Hard rock coasts erode very slowly due to the constraining factors of material strength and rock mechanics (ALLISON, 1989). Therefore the more resistant rock cliffs should remain essentially stable when erosional processes act upon them. In contrast, soft rock cliffs are subject to additional weakening by weathering and degradation by mass movement; these processes are likely to operate more rapidly in the wetter, warmer climate predicted for regions such as Southern England due to global warming (Department of the Environment, 1991). This concluded conclusively that the cliffs present in the south of England are more susceptible to erosional/ weathering processes. (Richard and Lorriman, 1987) pointed out that higher cliffs erode more rapidly because they generate higher shear stresses and suffer larger landslides, however they also yields more sediment per unit of recession. Whilst reading the article on BBC news ‘UK storms: Extreme weather caused years of erosion’ (21 February 2014) an interesting fact caught my attention which stated “more than 3m of the cliff at Birling Gap has been lost to the sea this year”. This is where I felt that a wider range of studies can be beneficial to investigate the reasons why this unpredictable event occurred, and also encouraging more people to undergo investigations to arrive at reliable conclusion.